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Optimal feedback controls are determined in a second-order differential game
of guidance, The problem to be investigated does not fall into the class of dif-
ferential games for which methods for constructing the optimal controls are
known at the present time,

1, Consider the controlled system
dofdt = — Mz +u+p +v (>4 >0) (1.1
dry/dt = — Mty +ku 4+ p, + v (K>0, 1<<0)

Here z;, r, are components of a two-dimensional phase vector x; p,, P, are arbi-
trary numbers; u and v .are, respectively, the controls of the first and second players,
subject to the constraints

@ <p, >0,  Jo@<v, v>0 (1.2)

Our aim is to find 2 method for the first (second) player to behave by a feedback rule
so as to guarantee him the smallest (largest) time for taking system (1,1) from an arbi-
trary position Zgin plane X to the origin for any behavior of the second (first) player,

By the term "the realization u ) (v (-)) " we agree to mean a measurable time
function u (f) (v (), o<t << oo, satisfying constraint (1,2) for any ¢ and stimu-
lated by the first (second) player during the game by some method, By the term "the
program u () (v (-)) " we shall mean a measurable time function 2 (2) (v (£)) satis-
fying constraint (1,2) for any £ and specified a priori on the interval £, < ¢ < oo.
We formulate the problem from the first player’s viewpoint, We take it that for 2 > £,
the first player can collide with any realization v (-)s The first player is obliged to
construct his own control by a feedback rule in discrete form with the aid of the func-
tions u [z], 8 [z]. The discrete time step & [x] > O defines the size of the semi-
interval t* < ¢ << t* 4~ 6 |z [¢*]] during which the control i is held constant, It
depends on the position x [t*], where it is chosen in accordance with the function ufz].

The functions u [z], & [z] are called admissible if when the situation arises that the
switching instant of control u tends to the limit ¢ . from the left, not coinciding with
the instant the phase point hits on the origin, the solution of the system (1.1) can be
prolonged for ¢ >> £, and if the number of such instants fs cannot be infinite on any
finite interval, The pair consisting of the function u [z] and of the sequence (8, [z])
is called a tactic of the first player and denoted {u, 8}. We say that a tactic {u, 8}
is admissible if the functions u [r], O, l] are admissible for any 7 .

Problem 1. Find the optimal admissible tactic {u®, 8°} for which the inequal-

ity Tulzo) = limsupy.y T [1o; u°, 8,°,0 ()] < supy( T [20; %, 8,0 (+)]

is fulfilled for any initial position Z, and any admissible functions u [z], 0 [x] . Here
T lzg; u, 8, v ()] isthe wansition time of system (1.1) from the point z4 to the
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origin under the functions u [z], 8 [z] and the realization v (-). The least upper bound
is taken over all possible realizations v (-). The bar over the limit sign signifies the
least upper bound,

Let us now formulate the problem from the second player's viewpoint, We take it that
for t >> t, the second player can collide with any realization u (-). The second player
is obliged to construct his own control by a feedback rule in discrete form with the aid
of the function v [z] and of the discrete time step A > 0. The discrete step A does
not depend on z and defines the size of the semi-interval ¢* < ¢ < t* - A during
which the contro] v is held constant, it depends on the position  [¢*], where it is
chosen in accordance with the function v [z]. We fix an arbitrary decreasing sequence
(An) converging to zero,

Problem 2, Find an optimal function v° [z] for which the inequality

T'v [Zo] =_llt__n infu(') T [2g; V°, Ay, u (')] > infu(') T [zo;v,A,u (')]
n—»>o00
is fulfilled for any initial position Zoand any v [z], A, Here T lz4 v, A, U ()
is the transition time of system (1.1) from the point Z to the origin under the function
v [z], the discrete step A, and the realization u (-), The greatest lower bound is taken
over all possible realizations u (-)e The bar under the limit sign signifies the greatest
lower bound, We note the obvious inequality

Tolz] < Ty %], neX (1.3)

2., We stipulate certain notation and definitions and we state the conditions (Lemmas
2.1 and 2, 2, without proof) under which the time T, [z,] = oo. By the letter ¥ we
denote the segment consisting of points 2 with the coordinates 7, = py + U, T =
= p, + I,|v| < v. We denote the origin by m.-

Lemma 2,1, If the segment V is intersected by the straight line x, = kz;, then
the time T, [z,] = Ty lz,] = oo for any initial position z, = m .

Taking this result into account, in what follows we accept that the segment V lies
strictly to one side of the straight line z, = kz;. To be specific we assume that it is
located strictly to the left of it,

The phase portrait of system (1.1) with # = const, v == const is a stable node
with an equilibrium position at the point

\ _(M“ ©+ Py +) )
2 =\Ast (hu + py + Iv)

We denote the points /2 (— i, V). (jt. V), b (p, — V), e (—p. —V) by Iy, T,
h.. I, ,respectively (Fig,1). We say that system (1,1) is attracted to the point // (1*,
t*) atinstant / if at this instant the velocity vector x*(f) coincides with the velocity
vector of system (1.1) as it moves from the point 7 (#) by virtue of 1 = n*, v = v*.
Therefore, if the values » (/) and v (¢) satisfying constraint (1, 2) are realized at
instant 7, then at this instant system (1, 1) is attracted to a point /i (1 (f), v (¢)) belong-
ing to the parallelogram h i fizh,. The union over v, |v| << v, of parallel straight

lines khgzy — AgTy| py 4 Io—kpy—ke 0 2.1)
each of which passes through the points 2 (—t, V) and h (p, V), is called the strip

V. By M,N, (M,N,) we denote the lower (upper) boundary line of the strip, The
part of plane X lying strictly below the line M, N, we denote by X;. The assertion:
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the point m belongs to set X, is equivalent to the assertion: the segment V lies strictly
to the left of the straight line x, = kz,. Through the points %;, h, and h,, h, we
draw, respectively, the straight lines PR, and P,R,. By means of these straight lines
we delineate a set F in X, (Fig,1). We include the intersection of the straight line
PR, (P,R,) with X, in E if the
angular coefficient of this straight line
is finite and negative (positive); other-
wise, we do not include this intersection
in E.

Lemma 2,2, Leeme X, \ E.
Then the time T, [z,] = oo for any
initial position xy, == m . The time
T, [z,] = oo for any z, =~ m except-
ing initial positions on the positive part
of the 7, -axis and on the negative part
of the Ty-axis, The time T, [z,]<C 00
for initial positions on the positive (ne-

Fig. 1 gative) part of the &y-axis (r, -axis)
if the straight line PyR, (P.I1,) coin-
cides with the x,-axis ( r,-axis); otherwise, T, [z,] = oo.

Let x,a and z, b be two smooth nonselfintersecting curves issuing from the one
point T, and not coinciding within some neighborhood of this point (Fig, 1), Let us
assume also that the angle between the vectors tangent to the curves r a and z,b at
the point z,is different from 5t; we accept that each tangent vector is directed to the
side of the motion along its own curve from the point z,. Under the conditions listed
there exists a number g, > O such that for any positive & << €, the circle of radius
e with center at point r, is intersected by each of the curves z,a and z,b atonly
one point and the angle g subtended at the vertex z, by the arc of the circle between
the points of intersection is different from 0 and %. We denote the point of intersection
of the circle with the curve z,a (z,b) by a, (5,). We accept that the angle a is
counted clockwise from point @;. We say that the relation .r,« < o b (r,a > 2,0)
exists between the curves r,a and . if for at least one ¢ <C £, the anglectis less
(greater) than 1. In this case we say that the curve .r,a is a left (right) curve relative
to the curve o, 0,

Let us introduce the concept of extreme curves, Consider the rectangle //, (1/.)
whose diagonal is the segment [k, li,| (171, i4l) and whose sides are parallel to the
coordinate axes, The intersection of set //, (/I,) with the interior of strip | is denoted
by Iy (F,). Let z, be any point of the plane, not belonging to /7, (¥,). We construct
aset Gy (r,) (G, (z,)) consisting of all points of the plane to which we can take the
system

drj/dv = Ary —u — py — 1 (e, Jr@IKY

drydr == Ay — ku — p, — Iv (2.2
from r, by means of a program ©* (1), T, << T<C 00, with w = p (1 = —p). Sys-
tem (2, 2) corresponds to system (1,1) in reverse time T == — {. The closure G, (r,)

(G5 (x,)) of set G, (x,) (G, (z,)) is a curvilinear cone with vertex at point 1, (i.e.
the set bounded by the two curves issuing from the one point x, and not intersecting
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away from this point) with smooth boundaries and an angle at the vertex not equal to
:t. That boundary of cone '} (z,) (G, (z4)) which is the left curve relative to the
second boundary is called an extreme curve rV)(z,, p) (rV (z,, —p)) ; the second
boundary of the cone is called the extreme curve r® (z,, p) (¥ (r,, —n)). The
cone (7, (ry) for some point .z, has been constructed on Fig, 1. It is denoted by (7, the
digit I denotes the curve NV (z,, p), the digit 2 denotes the curve r® (r,. j1). By
[ah) we denote the set of all points of the arc ab, including point @ but not including
b. We introduce the sets (ab), labl, (ab] similarly,

3, In Sects, 3, 4 we consider that the set EF contains point m within it, The relation
r® (m, p) > r® (m, —p) is valid under such a condition, Let us give a meaningful
description of a certain set A. It will be clear subsequently that it is a maximal set
for any point r, whose time T, [x,] <C co. All possible locations of the segments
(hy, hil and(h,, hyl (under the condition m &= E) fall into three Groups (equivalent
definitions are given within parentheses) :

1. The segment [k, /iyl lies above, but not necessarily strictly, the z,-axis (the
curves r(m, p), r® (;m, —n) do not intersect strip V).:

2., The segment [/, Iyl lies strictly below the ,-axis while the point h, does
not (the curve rfY (m, p) does not intersect strip V while the curve r® (m, —p)
does),

3. The segment |k, h,] and the point &, lie strictly below the Z1-axis (the
curve r) (m, p) intersects strip ¥), We separate the first Group into two cases : 1.1,
The curves r¥ {m, 1) and {2 (m, —n) intersect away from point m; 1.2. The
curves r((m,p) and 7 (m,—pu) do not intersect away from point .

f‘
, 5 iy’
4 N
A
M,
4N
A
A: 7T x
X R
a s\ya N
Fig, 2. Fig, 3.

Case 1.1 is possible only if both curves ¥ (m, R) and r® (m, —) pass into
the fourth quadrant and are intersected away from point m by the straight line Py/1,;
we denote the points of intersection, respectively, by b and’ ¢. The point of intersection,
other than m, of the curves XV (m, 1), and r® (m, —p) is unique and lies below
the straight line -P,R,; we denote it by g, The set 4 is a closed set bounded by the
curve mcabm. A typical construction of it is shown in Fig.2, The digits I, 2 denote
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the curves r®(m, —p), r¥ (m, p), respectively,

Case 1,2, As 4 we take the closed curvilinear cone bounded by the curves p(1)
(m, p) and p@ (m, — ),

We turn to the second Group, First of all we note that the curve F® m, —p)
intersects the line M,N,; let d be the point of intersection , We separate the second
Group into three cases: 2,1, The point d lies on the line Af,/, to the right of point
h,; 2.2, The points d and h, coincide; 2,3, The pointd lies on the line M,N4to
the left of point p,,

Incases 2,1, (Fig 3)and 2,2 we construct the curve ¥ (d, p)and denote it db.
By ma (dc)we denote the curve 1) (m, p) (r® (d, —W)). Let A, (4,) be the
closed curvilinear cone bounded by the curves jpdcand ma (db and dc). We set
4 =4, 4.

The peculiarity of case 2, 3 is that the segments [hy, kql, Ay, %] lie stictly
on different sides relative to the union of the curves r<f) (m, ) and (@(m, —p).In
this case 4 = X.

From the definition of the third Group it follows that botn curves r(¥) (m, 1) and
r® (m, —p) intersect strip V', We denote by e (d) the point of intersection of the
curve K1 (m, ) (M® (m, ~—p)) with the line M,N, (M,N,). We construct the
curves p1) (e, _u).and r (d, p).We separate the third Group into four cases:

3,1, The curves ri (m’ ll) ana e (m, __p,)intersect in the set Xl away from
point m.

3.2. The curvesr{? (m, —p)and (1) (e, p)intersect at the limits of swrip away
from point ¢.

3,8, The curves r® (d, p)and r® (e, —p)intersect away from point d.

3.4, The curves {1 (m, p)and r@ (m,. — 1) do not intersect in the set X, away
from pointmthe curves{2) (m, -—p,)and v (e, ) do not intersect at the limits of
strip YV and the curves ,.(z') (d, P‘) and 1) (e, __.p)do not intersect,

Case 3,1 is possible only if the curvespn (m, p)and r® (m, —p)are intersected
away from pointmby the straight lineP, R,; we denote the points of intersection by p
and ¢ , respectively, The point of intersection, other thanmof the curves (1) (m, ),
and r® (m, —p)is unique and lies above the straight line P,R,, we denote it by a.
The set Ais the closed set bounded by the curve*mcabm.

Incase 3,2, (3, 3)a denotes the point of intersection of the curves r2 (m, —u)
andr(0 (e, p) (@ (d, p) and 7" (e, —p)). The set A is the closed set bounded by
the CUrve maem (mdaem)_rhe set 4 for case 3, 3 is snown in Fig, 4,

Case 3,4, By Al, A2, As' respectively, we denote the closed curvilinear cones
whose boundaries are the curvesp® (m, —p)andr® (m, p), r® (d, pand r¥® (d, —p),
rife, p)and D (e, —R).Theset 4 = A, (J 4, U 4,

The following assertion is valid for any ot the cases described,

Lemma 3,1, ThetimeTl, [x,] = T, [x,] = oofor any initial position
z,=B=X\4

The lemma is proved by constructing the optimal function 1° [z], ¥ & I, which
guarantees to the second player the time I, [z,] = oo for any initial position z, & B.
That the time T, [xo]r z, = B, is infinite follows here from inequality (1, 3),
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The construction of the

function v°[z), z = B, is
different for different cases,
As an example we present the
construction for case 2,1, In
case 2,1, the boundary of set
A consists of two smooth
curves ma and mdb (Fig, 3).
Through the points Ay, k3 we
draw a straight line PR,. The
part of the curve ma (mdb),
located above the straight
line PRy (MyNy), is a trajec-
tory of system (1,1) foru = p,
v = —9¥ (v =v), while the
part located below tnis straight
line is a trajectory of system
(1.1) for u =p (u = —p),
V==V,

We consider a neighborhood
0 of set 4 of sufficiently
small radius suci that the seg-
ments {hy, hy}and By, hyllie outside this neighborhood. The intersection of the boundary
of neighborhood O with the trajectory of system (1.1) from point m for u = ~—p, v =
= —v is denoted by s,. We denote the boundary of neighborhood O by s,s,s, (Fig, 3).
The curve (ms,] is the part of the trajectory mentioned above, passing into the third
quadrant outside set A and outside strip V. The set O \_4 divides this curve into two
parts, Let F; be that one of them that is adjacent to the curve maand let F, =
= (0.\\ 4)\\ Fy. We include the curve ms, in F,. If the straight line P R, intersects
set Fy, we denote by F{!} its subset lying below this straight line and by F® the
complement of F(ll) in p,. If there is no intersection, we set F(ll) = F.
It is not difficult to prove the validity of the following assertion, 1) If z, = z(t,) &
€ (ms,] and v = v (v = — v), then there exists a number At > 0, not dependent on
Zg, such that on the interval [ty ¢4 + At) the system (1.1) will be moved outside the
set Fy |) Afor any realization u(-), Inset B we define a function.»°[z] in the follow-
ing way. In the set F, |J F; C B we put

Fig, 4

I)O[.‘t] B v, if fe ol o FaUFl(”
—_V, if z& Fl(z)

The function. v°[z] is given arbitrarily in the set B \ (F, {J F,) Let us assume that at
some instant. ¢ system (1,1) finds itself in the set £, (J p(ll) (p(f’) and that (t) =

= v°[z(t)]. Then for any value u(?) it is attracted at this instant to one of the points
of the segment [h,, k,] ([kg, #,]). Relying on this property and taking into account the
above-described nature of the boundary curves of set 4, we can prove the following
assertion, 2) Suppose that the second player applies a discrete scheme on the basis of
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the function v°[z] and that z, € #, (z, € F,). Then for a step of the discrete scheme
An < A(xy), Wwhere A(zg) >0 is a sufficiently small number, the system (1.1), for
any_realization u(-) goes into the curve (s;s3m) ({3, 84)) in a finite time, without hitting
on the boundary of set 4 up to the instant of going into the curve mentioned,

From assertions 1), 2) it follows that if the second player applies a discrete scheme
on the basis of the function v°[z], then from any initial position z, & F, {J Fywitha
suffi ciently small step of the discrete scheme, system (1,1) is carried out to the curve
5, 53 sy, without hitting on the boundary of set 4 upto the instant of going into the
curve, On the basis of this conclusion we can show that for any z, &€ B, with a suffi-
ciently small step of the discrete scheme, it is impossible for system (1,1) to fall into
the boundary of set A (and, hence, also into 4) fort > ¢ The latter proves the optim-
ality of the function v°[z}, z & B.

4, Let us solve Problems 1, 2 for initial positions z, in the set 4.We examine case
2,1, Consider the family L of all possible trajectories of system (2,2) with v = v,
starting at point d. Any trajectory of this family passes into set 4,. We select an arbit-
rary trajectory from L and we denote it df (Fig,3)., Let C be a maximal closed sub-
set of set A ,located to the right of the curve mdf,and let D = A \_C.We state an
auxiliary rule for forming the realizations u (-} in the set 4 \ {m}by the feedback
pri nciple,

Rule 1, The value u (#) atinstant ¢ equals —p (p),if z (f) e C '\
\([ma) U (df)) (z (t) & D).1f x (t) & (df)the value u (t) is chosen in accordance
‘with the value v (¢) from the condition of moving along this curve in the direction of
point d ; if, however, such a choice is not possible, we set u (f) = — p. If z ()
= (ma), 1 () is chosen in accordance with v (¢} from the condition of moving along
this curve in the direction of point m.

Let us explain the choice of the value u(¢) on the curves (df) and (ms). From the
definition of the curve df , it follows that system (1. 1), moving along this curve toward
point.d when v = v, is attracted at each instant ¢ to some point q(t) -of segment
[k hg]. We draw a straight line through the points z(#) and g(2) The segment Ip(t),
q(t)]— the intersection of this straight line with strip ¥ — does not necessarily belong
wholly to the parallelogram h,h,hshe, Namely, a part of this segment — the interval
[p(t), o(t)) (o(t) is the point of intersection of the segments [hy, h¢] and [p(t), ¢(t)]) —
can lie to the left of the segment [k, h,](Fig, 3). The interval p{t). o(t)}also picks
out those values u(t) (see (2.1)) from each of which it is impossible to choose a
value u(t), satisfying constraint (1,2) and directing the vector r'(¢) along the tangent
to the curve df on the side of point d. For such values u(t) in Rule 1 we have set

u(t) = —p, and, by the same token, the vector z'(t)is directed into the interior of
set C.For values u(t), corresponding to points of the segment [o(t), ¢(t)], the vector

z'(f) can be directed along the tangent to the curve df on the side of point d.
The vector z-(t) has least length when (1) == v. At any point z{t) & (ma) from any u(2)
we can choose u(t), directing the vector z*(t) along the tangent to ma on the side of
point m.The tangent vector z-(t) has least length when v(t) = —v.

For any realization v(-)Rule 1 allows us to transfer system (1.1) from any point
I, <. A to the point m,in finite time, without its leaving set 4.(Recall that by a
realization p (.) we mean a time function v (), t, << § << 00, stimulated by the
second player during the game and not necessarily specified a priori, )
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We denote the transition time by T [z,, v (-)]. By TW [z,] we denote its least upper
bound over all possible realizations v (-).

We introduce the set U [z, v (+) | A] (U [z, v (+)| D]) of programs  (-): a
program u (- )belongs to set Ul&y, v () |AN(U [z4, v (+)|D]) if in moving from the
point &, € .1 (x4 & D) by virtue of programs v (-) and u (-) system (1, 1) hits point
m (curve df)in the finite time T') [zq; u (+), v ()] (T lzg; u(-). v (+)]) without
leaving set A (D) upto the instant of the hit, From the set of all possible programs
v (-) we pick out a set V [z, |C]: a program v (-) belongs to set V [z,|C]if in
moving from the point £, & ( by virtue of this program withu = — p, system (1,1)
does not leave set C upto the instant of hitting onto curve ma. We pose an auxiliary
problem,

Problem 4.1. Findright-piecewise-continuous programs v* (.) & V [z,|Cl,

u* () Ulz,, v (-)I|d4], satisfying the relation
T, {xo] = maxyymingy Ty [Zo; 4 (+), 0 (-)] = Ty [Zosu* (+), 0* (4], re=C
where the maximum is taken over all programs v (-) & V [z,/C] and the minimum
over all programs u () & U lzq, v (+)| 4].

Lemma 4,1, The solution of Problem 4,1 is unique for any initial position
zo & C Forany 2, & C we have v* (f) = —v,and the program u®* (-) coincides
with the realizationy (+), formed in accordance with Rule 1 with v () = —v, The
program p* () satisfies the relation

TW [zg, v* (+)] = maxy T [zo, v (1), ze&C (4.1)

where the maximum is taken over all programs v () e V [z, Cl.

Proof, The motion of system (1,1) by virtue of the programs v*(-) and u*(+),
mentioned in the Lemma's statement is denoted by z°(t) and is termed standard,

1. We prove relation (4,1), Assume that the first player uses Rule 1, Let z, =
= z(ty) &€ C \\ [ma).By tlz,, v(-)] we denote the first instant that system (1,1) hits
onto curve ma.We fix an arbitrary program v(:) &V [} C], The motion z () of system
(1.1) by virtue of this program and of Rule 1 is called a phase motion (to distinguich it
from the standard motion), We set t[zx,] = max {¢[zo, v(+)], ]z, v*(+)]}. Let us show
that at the instant [z,] the point z(t[z,]) is located on the curve ma not farther in
relation to point m than the point z°(¢[z,]) (notation: z(t[z,)) < 2°(¢[z,])). The validity
of relation (4.1) for any z, &€ C follows from the obvious validity of this relation for
zy € (ma) as a corollary of the last assertion,

Through the points hy, hy we draw a straight line PR, (Fig.3), Let C'V (C'¥)be the
part of set C lying above (below) this straight line, The intersection of the straight
line P, Ry with set C is included in ¢, Assume that z, & €. The standard motion
on the interval [t,, t[zq, v*(-)}])will be attracted to the point k,, while at any instant
t & [ty t[zo, v(+)])- the phase motion will be attracted to some point (depending on ¢)
of the segment [k,, k,].Hence, with due regard to the nature of the orientation of
segment [h,, k,] we get that when t 2> ¢, both motions will pass into ¢ and the points
where they hit onto the curve ma are connected by the relation z(t[zo,v(+)]) << 2°(t[zow* ()]).
Conseauently, to prove our assertion we need only examine the case t(z,, v*(-)] <
< t{zg. v{+)). It is possible only when the curve ma decreases monotonically with
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respect to z,.In this case, for any ¢t & [t[zy, v*(+)], ¢[2,]) the standard motion is attracted

to some point of the segment [h,, h,], whereas the phase motion is attracted to a point

of the segment [hy, hy]. Therefore, for any tE [ty, t{z,])we have 7' () < ,°(¢), and,
hence, z,(¢{z, )< 2,° (t{,]). Since at the instant ¢[z,] both motions are found to be on
the curve ma, (keeping in mind the nature of this curve) we obtain: z(t[z,]) < 2°(#[z,)).

By means of arguments of the very same kind we can prove the relation z(¢[z,]) <

< 2°(t[z)) also for z, € €O,

2, letzy & Cand v = —v. The program u, (-} € Ulzy, v*(+)]4],solving the problem
of transferring system (1.1) in least time from the point z,to the point m without its
leaving set 4. has the following structure: it equals —p upto the instant that system
(1.1) hits onto the curve ma,and subsequently it effects the motion of system (1,1)
along the curve ma upto the instant of hitting onto point m.This fact follows from a
qualitative analysis of the reachable region [1] of system (2,2) from the pointz(ty) = m
with v = — v and under the phase constraintz(t) € C, T > 7.Obviously,u,(+) = u*(+).
Hence the lemma’s assertion follows from relation (4.1), The Lemma is proved,

For any z, &= A, C C the set V [z4] C],coincides, as is not difficult to verify,
with the set of all possible programs v (- ). Therefore, in the set 4 the time T [z4] =
= TW [g,]. From among the curves of family L let us try to find a curve df° which
sepafates out from the set 4,a maximal closed subset C°(containing Ay), for each
point .z, of which the equality 1, [z,] = T® [z,] is satsfied, Such a curve exists,
We can indicate a method for constructing a sequence of curves whose limit it is, We
restrict ourselves to listing some properties of this curve,

2 B i we denote the point of inter-

\ 4 0 section of the straight line P,/

l;, with curve db ¢Fig, 5), If there is
no intersection we take it that the
point i lies at infinity (on the curve

2° I /h db)

1, The curve df° is a smooth
trajectory of the motion of system
(2.2) from point @ with v = v,

2, The relation”V (z,, —p)<<
Lz fo<<r® (2,,—~p)is valid
for any point Z, on curve df°

Let 20, z(® be arbitrary points
on curve df° and let z() be located
closer to d as compared to z(®,

3, The maximumZ'® [z(z)‘.z:ﬂ)l
of the time I'® [z z(W); p(.)]
it takes system (1.1) to move from
4 // IR // the point @ to the point z{})along

/A \\\\\ curve df° taken over all programs

v(-) for which such a motion is

possible, is reached on the program

a 4 v () = w.

4, The inequality

Fig. 5
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T® [z,, dl + T, [d]l < T, [z,] (4.2)

is valid for any point Z, on curve df°

5. Let g be the point on curve df°, for which the equality sign in (4, 2) is first ach-
ieved when we go from the point d, Then, the equality sign is achieved in (4, 2) for any
point z,on the curve gf°, The arc dg of curve df° lies completely on the arc di of
curve db.

6. If point z(}belongs to the curve [dg) ([g/°)) then the inequality (equality)

T [20, 0] + Ty [z0] K Ty [a@] (7@ [2@, 20] 4 Ty [a0] = T, [a®])

is valid,
The curve gf° — a part of the curve df°, — is called an equivocal curve [2], We pose
two auxiliary problems,
Probelm 4,2 (4, 3), Find right-piecewise~continuous programs
() ur () E Ulzg, v* ()| 4ANu* (1) € U Lz,
® N ] O'= *
satisfying the relation v ()|D7, D= AN C).
maXy(.) min,,(.) Tl 2o, 1 ('),'U (')] = Tl [xoi u* ('), v* (')]v Ty c°
(4.3)
(T [2o] = maxyey minyy {Tq [Zo;u (), v ()] + Tyl [z u (), v ()]} =
= Ty [zo;u® (+), v* ()] + Ty lz [zo;u* (+),0* (+)]], o = D°)

where the maximum is taken over all possible programs v (-) and the minimum over
all programs o
u(-YE Ulzg, v() |4l (u ()& Ulz,, v () D)

and z lxy; w(-), v (-)lis the notation for the point of first entry of system (1,1) onto
the curve df° from the point z, €= D°by virtue of programs u (), v (+).

The solution of Problem 4, 2 ensues from the solution of Problem 4,1, from the prop-
erties of curve df° and from the equality T [z,] = T® [z,], 2, & C°. When
zo & C° \ (gf°) the program p* (.)-is unique: v* (f) = — v. For points x4 on the
curve (gf°) the maximum in (4, 3) is reached on any program v* (+) of the form

I e
In any case the program y* (.) coincides with the realization u (-) formed in accord-
ance with Rule 1 with v (f) = v* (f). The solution of Problem 4, 3 is described in
Lemma 4,2, its proof is omitted,

Lemma 4.2, For any initial position x, & D°the solution of Problem 4, 3 is
unique, For any r, & D® we have v* (f) = v, and the program u* (.) coincides
with the realization & (-) formed in accordance with Rule 1 with v (¢) = ¥. The
program v* (-) satisfies the relation

Tolzgsu® (+),v* ()1 + Ty [z [zo;u* (-), 0* (4)]] =
= maxyy {Tg [Zo; u* (-), 2 ()] + Ta [z [Zo;u* (), v ()]} (@e D)
where the maximum is taken over all possible programs v (. )

Typical trajectories of the motion of system (1.1) in the set C° (D°®) by virtue of
programs v™* (.), u* (-), solving Problem 4,2 (4, 3), are shown on Fig, 5, Thus, Rule
1 guarantees the first player the time
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Tl[zoly‘ if %EC.

T® [z,] ='{ Tafzo], if HE&D

(4.4)
It is not difficult to establish that the function T1) [zo] is continuous in the set
A = C° |y D° Inthe set4 \ {m}Ilet us construct, on the basis of Rule 1, the opti-

mal tactic {u°, 8°}. We set )

wieg={ " if 2 C\(maU@f’)

By if =2ze€DU(ma)l (/)

The second element of the tactic — the sequence (8,° [z]) on the curve (ma) ((2f°))
~ is specified by means of a fan-shaped sequence (B,) ((y,)) of auxiliary curves con-
verging to the curve ma (df°) asi — oc,Each curve of the sequence should leave the
point mm (d) and pass into the set C* \ (ma) (C° \\ (df°)). (Several curves of the
sequence (B,) ((¥n)) are shown on Fig, 5 where they have been denoted by } (¥).)

At a point.Z,on the curve (ma) ((df°)) we set §,° [z,]equal to the least time, with
respect to v (- ) for system (1,1) to move from the: point z, upto the curve B, (yn)
with i = p. At the remaining points of set 4 \ {m}we taked ° [z] = &° [z]for any

It. We choose the function 8° {z]such that for any arbitrary initial position

Iy = I (ly) = C°\(lma) U (@f°)) (xo =z (ty) = D°), =—pn (4=
systern (1,1) with any realization (- )may not leave the set C® (D°) in the interval
[tg, 2o+ O° [24]leThe tactic {u®, 8°} described ensures the "sliding" of system (1.1)
along the curve ma in the direction of point m for any realizationv (- ).Here the motion
does not go outside of set 4,The appearance of a sliding mode on the curve df° is
already connected with a concrete form of the realizationv (-).A possible trajectory

of the motion of system (1,1) when the first player uses the functions u° [z], 8,° [z]

is shown by a dotted line in Fig, 5,

Let us sketch the proof of the optimality of tactic {u®, 8°).Let x, be an arbitrary
initial position in set A.We fix an arbitrary program v(:). As n — oothe sequence of
trajectories of the motions of system (1,1) from the point z, by virtue of prograrm

¥(-) and of functions u®{z], 8,,°[z] converges to the trajectory of the motion of system
(1.1) from the point &z, by virtue of program u(-) and of Rule 1, Here the sequence
(Tlzo; u® 85 v(+)]) converges to the quantity T [z, v(-)]. Consequently,

Spo T [30, 0 ()] = sup () T T [20:0%,8,%0( )], mo€ A (43)

Here the least upper bound is taken over all possible programs v(:). Further, for a given
concrete tactic {u°, 6°) we can prove the equality

supv(.)ET [zo; ©°, 8,°, v(-)]= Esupv(‘) T [20; 4% 8p° v ()] e A (4.6)

where too the least upper bound is taken over all possible programs u{-), It is obvious
that the least upper bound of the quantity

T(z;u%8,°%0() (T2, 2()]), wEA4

over all possible programs v () coincides with the least upper bound of this quantity
over all possible realizations v(-). With due regard to this fact, the optimality of the
tactic'fu®, -§*)ensues from the equalities (4, 5), (4. 6) and from the meaning of the time
T [£,] (see the definition of this time and see formula (4, 4)).

The known form of the maximin programs v* () solving Problems 4.2, 4, 3 right
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away permits us to determine, keeping inequality (1, 3) in mind, the optimal function
v 2] —v if 2ECNEP
v° [z] = v, if z&D°
eitherv, or —v, if zE(gl)

Thus, for any initial position 2, &= A the tactic {u° 6°} guarantees the first player
the time
T. [zo] = Tu [zo] = TW [xo] << o0

while the function v° [z£}does the same for the second player,

The limit (as n = oo ) motion of system (1,1) from a point 2, & A by virtue of
functionsy® [z], 8,,° [z]and of functions v° [z] with a discrete step A, is called a
standard motion, By looking over all possible methods of specifying the function

v° [z] on the equivocal curve gf°, we obtain a complete collection of standard
motions issuing from the one point Xy and reaching along different trajectories the
point m.in one and the same length of time, Whengz, & C° this collection is contai-
ned in the set of all motions of system (1,1) from point~z, by virtue of the programs
v* (), u* (-), solving Problem 4,2, When z,& D°the standard motion coincides,
upto the instant of hitting
2 f onto the curve gf° with the
2 motion of system (1,1) by
virtue of the programs

Da "’g’ u* (')’ v* ()9 solving
d Problem 4, 3.
The analysis of Case 2,1

r has been completed, We
/, 7 dwell briefly on the remain~
m 4 ing cases, The single diff-

2 / erence between case 2,2 and

! the one just analyzed is that
the time T, [z,] = T, [z, |=
= oo on the curve (db)
(in this case it is a halfline),
In case 2,2 the point g coin-
cides with point d.

In cases 3, 3, 3,4 the standard motion goes along the curve me before hitting the
point m .The solution is similar to the solution in case 2,1: the set 4 is divided in the
same way into two sets C° and D° and in them the tactic {t°, 6°} and the function
v° [z] are determined in the same way, In the set 4 the time T, [z,] = T, [zol<<
<Z oo and has the same meaning as before,

Cases 1.1, 1,2 (3.1, 3.2) can be looked upon as a degeneration of case 2,1(3, 3)
when 4 = A,. In these cases the equivocal curves do not arise,

The solution in Case 2, 3 is most complicated in nature (Fig, 6). LetA,be a closed
curvilinear cone containing the z; -semiaxis and bounded by the curves r® (m, p)and
r® (m, —p). A certain curve ggmdf divides the set 4 = X into two parts C° D A,
and D° = A4 \ (°; the curve agmdf is included in C°.The arcs md and qm

Fig. 6



On a second-order differential game 547

of the curve agmdjf abutting point mare arcs of the curves r(® (m, —p)and r®
(m, p) respectively, The curves df and aq are equivocal, they pass into the set

A \_A4,;. The location of point ¢ on the curve 1) (m, p) depends upon the distance
between the point.d and kg, The functions y° [z] and y° [z] are determined in the
following way:

. __{ —n, if z&C\(Imga)U (df))
wlgl=\ u if 2 0°U(mea) U @)

{ —v if z&C\{(ge) U (
vO [x] = l v, if x E D°
eitherv, or —9%, if z&(ga)U@EN

The sequence (8,° [z]) is given with the aid of auxiliary curves, The time Ty, [zo) =
= T, lz,) << oo on the whole plane, The function T, [z,] undergoes a discontin-
uity on the curve [gmad]. It is continuous in the rest of the plane,

Figures 2, 4, 6 show typical standard trajectories for cases 1,1, 3.3, 2.3, respectiv-
ely, Thus, the solutions of Problems 1 and 2 for the cases not covered in the hypotheses
of Lemmas 2,1, 2.2 have been found completely, Namely, a partitioning of the plane
into two sets 4 and B has been indicated, Forzy &= Athe time Ty [xy) = T, [z,] <
<< oo(the only exception is case 2,2 in which the time T, lz,) = T, [z,] = ooon
the halfline (db) lying on the boundary of A ). For 2y & Bthe time T, [T,] =
=T, z,] = 00.The first player's optimal tactic {u°, 8°}and the second player's optim-
al function t° [z] have been determined in set 4, The optimal function p* {g] has
been found in set B .

The author thanks N, N, Krasovskii for discussions on the work and for valuable advice,
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