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Optimal feedback controls are determined in a second-order differential game 

of guidance. The problem to be investigated does not fall into the class of dif- 
ferential games for which methods for constructing the optimal controls are 

known at the present time. 

1, Consider the cormolled system 

dx,ldt = - h% -t rJ + Pl + u 62 > A, > 0) 0.1) 
d.&‘dt = - h”z, + krr f pa + Iv (k> 0, I< 0) 

Here q, x2 are components of a two-dimensional phase vector x; p,, pz are arbi- 

trary numbers ; zi, and u.are, respectively, the controls of the first and second players, 

subject to the constraints 

1 lb (t) I G p. P z 0, b(e39 v>o (1.2) 

Our aim is to find a method for the first (second) player to behave by a feedback rule 

so as to guarantee him the smallest (largest) time for taking system (1.1) from an arbi- 
trary position xsin plane AY to the origin for any behavior of the second (first) player. 

Ry the term “the realization u (.) (v (e)) ” we agree to mean a measurable time 

function u (t) (u (t)), t, < t < 00, satisfying constraint (1.2) for any t and stimu- 
lated by the first (second) player during the game by some method. By the term “the 

program u (a) (0 (a))” we shall mean a measurable time function ZL (t) (u (01 satis- 
fying constraint (1.2) for any t and specified a priori on the interval 4, < t <co. 

We formulate the problem from the first player’s viewpoint. We take it that for 1 > t, 
the first player can collide with any realization u (s). The first player is obliged to 

construct his own control by a feedback rule in discrete form with the aid of the func- 

tions u [Xi. 8 [xl. The discrete time step 8 [xi > 0 defines the size of the semi- 

interval t* < t ( t* f d It [t*]] during which the control*u is held constant, It 
depends on the position x It*], where it is chosen in accordance with the function u[x]. 

The functions u [x], 6 [r) are called admissible if when the situation arises that the 
switching instant of control u tends to the limit t, from the left, not coinciding with 
the instant the phase point hits on the origin, the solution of the system (1.1) can be 

prolonged for t Y *. L f and if the number of such instants t, cannot be infinite on any 

finite interval. The pair consisting of the function u 1x1 and of the sequence’(6, [xl) 
is called a tactic of the first player and denoted {u, a}. We say that a tactic {!I, 0) 

is admissible if the functions I/ 111, A,, l.z:j are admissible for anyn . 
Problem 1. Find the optimal- admissible tactic {u”, 8”) for which the inequal- 

ity T, 1x01 = lint sup,(.) T [.I-,; u', r',", v(-)I< sqQ.,T [ql; %&~(-)I 
?l-D?Q 

is fulfilled for any initial position x,, and any admissible functions IL Is], 3 [xl . Here 

T lx,,; U, 6, u ( .)I is the transition time of system (1.1) from the point x0 to the 
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origin under the functions u [s], 6 Is] and the realization v (. ). The least upper bound 
is taken over all possible realizations u (.). The bar over the limit sign signifies the 

least upper bound. 
let us now formulate the problem from the second player’s viewpoint. We take it that 

for t > is the second player can collide with any realization u (s). The second player 
is obliged to construct his own control by a feedback rule in discrete form with the aid 
of the function v [t] and of the discrete time step A > 0. The discrete step A does 

not depend on t and defines the size of the semi-interval t* & 1 < t* i- A during 

which the control u is held constant. it depends on the position .z It*], where it is 
chosen in accordance with the function u 1x1. We fix an arbitrary decreasing sequence 

(A,) converging to zero. 

Problem 2. Find an optimal function u” [z] for which the inequality 

T;, [soJ = lim inf,(., T [so; II’, A,,, u ( l )] > inf,(., T [z,,: u, A, u (-)I 
ii== 

is fulfilled for any initial position soand any u [s], A. Here T 1x0; U, A, u (*)I 
is the transition time of system (1.1) from the point 2s to the origin under the function 
U [sJl* the discrete step L\ , and the realization u (0). The greatest lower bound is taken 
over all possible realizations u (. ). The bar under the limit sign signifies the greatest 
lower bound. We note the obvious inequality 

T, [zol G T, [soIt qJE x (1.3) 

2. We stipulate certain notation and definitions and we state the conditions (lemmas 

2.1 and 2.2, without proof) under which the time T, [s,,l = 00. By the letter V we 
denote the segment consisting of points a.~ with the coordinates zt = pt + n, 52 = 

= Pz + 4 nl < v. We denote the origin by ma 
Le mm a 2.1. If the segment V is intersected by the straight line % = k.zt, then 

the time T, [toI = T,, [soI = 00 for any initial position x0 # m . 

Taking this result into account, in what follows we accept that the segment v lies 

strictly to one side of the straight line us = kxt. To be specific we assume that it is 

located strictly to the left of it. 
The phase portrait of system (1.1) with u = conat, u ‘= con& is a stable node 

with an equilibrium position at the point 

h (u, u) = 
( 

A,-’ @ + Pl -I- 4 

h-’ (ku + Pa + w 1 

We denote the points I/ (--II, 2.). IJ (11, I’), ir (it, - v), 1~ (--II. --V) by /I,. I/,, 

11 ‘, . 1) , , respectively (Fig. 1). We say that system (1.1) is attracted to the point 1) (/I*, 
I‘“) at instant I if at this instant the velocity vector a*(l) coincides with the velocity 
vector of system (1.1) as it moves from the point J (t) by virtue of IL = IL*, r~ = u*. 

Therefore, if the values rl (I) and v (f) satisfying constraint (1.2) are realized at 
instant 1, then at this instant system (1.1) is attracted to a point 1~ (rl (1). 1’ (1)) belong- 
ing to the parallelogram h,h,h,h4. The union over u, IuI SZ v, of parallel straight 
lines k&J1 - )LZ,TZ-{ fJ2 -I- ]l)--/il),-/il~ 0 (2.1) 

each of which passes through the points h (-11, U) and h (CL, I,), is called the strip 

I/. By nf,N, (nf,N,) we denote the lower (upper) boundary line of the strip. The 
part of plane x’ lying strictly below the line ICf,N, we denote by X1. The assertion: 
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the point m belongs to set X t, is equivalent to the assertion: the segment 1’ lies strictly 
to the left of the straight line xs = k~l. Through the points k,, ha and It,, Is4 we 

draw, respectively, the straight lines PrZ?, and P,R2. By means of these straight lines 
we delineate a set E in X,(Fig. 1). We include the intersection of the straight line 

P,R, (P,R,) with X, in E if the 

angular coefficient of this straight line 

is finite and negative (positive) ; other- 
wise, we do not include this intersection 
in E. 

Lemma 2.2. Let rn~ X, \ E. 
Then the time T,, Ix,] = 00 for any 

initial position x,, #- m . The time 

T, Ix,,1 = 00 for any x0 # m except- 
ing initial positions on the positive part 
of the x,-axis and on the negative part 

of the x,-axis. The time T, [toI < M 
for initial positions on the positive (ne- 

Fig. 1 gative) part of the Zr-axis (.rr -axis) 

if the straight line PIR, (P2R,) coin- 

cides with the x,-axis ( z,-axis); otherwise, T, [x0] = 00. 

Let ~,:a and z,b be two smooth nonselfintersecting curves issuing from the one 

point Xi and not coinciding within some neighborhood of this point (Fig. 1). Let us 
assume also that the angle between the vectors tangent to the curves r,a and 5, b at 

the point ~,,is different from rt; we accept that each tangent vector is directed to the 
side of the motion along its own curve from the point x*. Under the conditions listed 
there exists a number ea > 0 such that for any positive E < E, the circle of radius 

e with center at point x* is intersected by each of tke curves x,(1 and x,6 at only 

one point and the angle a subtended at the vertex z, by the arc of the circle between 
the points of intersection is different from 0 and Z. We denote the point of intersection 

of the circle with the curve z*a (x,6) by or (6,). We accept that the angle a is 
counted clockwise from point (11. We say that the relation J;:, u ( .I’, 1) (J., o ,> .7.*/l) 

exists between the curves ~~(1. and ,r,i) if for at least one r < F. the anglectis less 
(greater) than X. In this case we say that the curve .r,n is a left (right) curve relative 

to the curve J’., 11. 

Let us introduce the concept of extreme curves. Consider the rectangle If, (11,) 

whose diagonal is the segment [jr:, I?,] ([jr,, /14]) and whose sides are parallel to the 
coordinate axes. The intersection of set 11, (If,) with the interior of strip 1’ is denoted 

by r’, (F,). Let x* be any point of the plane, not belonging to /.‘t (F:). We construct 
a set C, (x,) (G, (b,)) consisting of all points of the plane to which we can take the 

system 
d.r, /(IT = h,.r, - II - pr - ,’ ( 111 (T) I <<It, I )’ (T) I < v) 

t?.r,~rlr --= h,n, - Irrc - p2 - 117 (2.2) 

from .r.+ by means of a program r’ (T). T,, < ‘5 < 00, with II =I 11 (II = -11). Sys- 
tem (2.2) corresponds to system (1.1) in reverse time T .- - 1. The closure CT1 (.r*) 

(G: (.r*)) of set GI (.r*) (G, (.r*)) is a curvilinear cone with vertex at point I+ (i.e. 

the set bounded by the two curves issuing from the one point S, and not intersecting 
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away from this point) with smooth boundaries and an angle at the vertex not equal to 
:I. That boundary of cone I!!, (z,) (c, (x*)) w IC is the left curve relative to the h’ h 

second boundary is called an extreme curve d-(1) (.r*, 11) (r(i) (x*, --!I)) ; the second 

boundary of the cone is called the extreme curve ~(2) (r*, 1~) (fir) (.T,~, ---it)). The 

cone c, (.r*) for some point t, has been constructed on Fig. 1. It is denoted by C, the 
digit 1 denotes the curve fi*’ (t*, it), the digit 2 denotes the curve r(?) (.r*, p). !q 
[n/l) we denote the set of all points of the arc ah, including point a but not including 

b. We introduce the sets (n/l), InhI, (ab] similarly. 

3. In Sects. 3, 4 we consider that the set E contains point m within it. The relation 
0 (m, /L) > 1.(?’ (111, -11) is valid under such a condition. Let us give a meaningful 
description of a certain set ri. It will be clear subsequently that it is a maximal set 

for any point .rO whose time T, Ir,] < co. All possible locations of the segments 
[hi, /r,l and [II,, h,l (under the condition f71 E E) fall into three Groups (equivalent 
definitions are given within parentheses) : 

1. The segment [IL!, It,1 lies above, but not necessarily strictly, the s,-axis (the 

curves r(l) (m, II), dz) (m, --it) do not intersect strip v): 
2. The segment [I!,, It.,! lies strictly below the s,-axis while tb.e point h, does 

not (the curve r(l) (m, p) does not intersect strip V while the curve fis) (m, -11) 

does). 
3. The segment [h,, h,] and the point hs lie strictly below the J&-axis (the 

curve r(l) (m, 1~) intersects strip v). We separate the first Group into two cases : 1.1. 
The curves r(l) (m, p) and l-(i) (m, -_I,) intersect away from point m; 1.2. The 

curves r(r)(m, FL) and fiz) (m,--1~) do not intersect away from point m. 

Fig. 2. Fig. 3. 

C a se 1.1 is possible only if both curves 6’) (m, P) and r(2) (m, --IL) pass into 
the fourth quadrant and are intersected away from point m by the straight line P,R,; 

we denote the points of intersection, respectively, by b and’ c. The point of intersection, 
other than m, of the curves r(l) (m, P), and r(s) (m, -cl) is unique and lies below 
the straight line ,P,R,; we denote it by a. The set A is a closed set bounded by the 
curve mcabm. A typical construction of it is shown in Fig.2. The digits 1, 2 denote 
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the curves ,(s)(m -p), fill (m, p), respectively, 
C as e 1 . 2. Ai A we take the closed curvilinear cone bounded by the curves r(l) 

(m, IL) and r(2) (m, - IL) 
We turn to the second Gioup. First of all we note that the curve r@) m, -11) 

intersects the line M,N,; let d be the point of intersection . We separate the second 

Group into three cases: 2.1. The point a lies on the line flfzN, to the right of point 

IQ.; 2.2. The points d and h; coincide; 2.3. The point a lies on the line Af,Ns to 

the left of point b. 

In cases 2.1. (Fig 3) and 2.2 we construct the curve ~(2) (d, p)and denote it db. 

By ma (dc) we denote the curve fill (m, CL) (r(2) (d, -p)). Let A, (A,) be the 
closed curvilinear cone bounded by thk curves m&and ma (& and &). We set 
A = Al u AZ. 

The peculiarity of c a se 2, 3 is that the segments [h,, haI, [&, ha] lie strictly 

on different sides relative to the union of the curves r:i) (m, 1’) and r(z)(m, -p).In 

this case A = X. 
From the definition of the third Group it fol!ows that both curves r(l) (m, p) and 

r(2) (m, -p) intersect stripV.;We denote by e (d) the point of intersection of the 

curve fill (m, p) ,(r(Z) (m, .-CL)) with the line Mlbr, (flI,Ns). We construct the 

curves fil) (e, -p).and r(a) (a, p). We separate t‘ne third Group into four cases: 

3.1. Tine cuives r(l) (m, P) ana+ (m, -p)intersect in the set X, away from 

point m. 
3.2. T5e curvesr@) (m, -p)and fil) (e, CL)’ Intersect at the !imits of stripvaway 

from point C. 

3.3, The curves fi2) (d, p)and r(l) (e, -1L)intersect away from point d. 

3.4, The curves ,CO (m, p) and r(2) (m,. -cc) do not intersect in the set X, away 

from pointmthe curves+) (m, -p)and $1) (e, p) do not intersect at the limits of 

stripvand the curves &) (d, CL) and +) (e, _rl)do not intersect. 
C a se 3. 1 is possible only if the curves+, (m, P)and c2) (m, -1t)are intersected 

away from pointmby the straight lineplfil; we denote the points of intersection by b 

and c . respectively, The point of intersection, other thanmof the curves ~(1) (rl), rl), 
and r(2) (m, -1k)is unique and lies above the straight line p,R,, we denote it by a. 
The setAis the closed set bounded by the curve’mcabm. 

In c as e 3. 2, ( 3. 3) a denotes the point of intersection of the curves r(2) (m, -p) 

and r(l) (e, p) (r(2) (d, p) andr(‘) (e, -\~)).The set ri is the closed set bounded by 

the curve macm (mdaem). The set n for case 3.3 is shown in Fig, 4, 

Case 3.4, BY Al, A,, As. respectively, we denote the closed curvilinear cones 
whose boundaries are the curvesr(2) (171, -_CL) and r(l) (m, p), rc2) (d, p)and fi2) (d, -p), 

fil)(e, p)and fil) (e, -P)+The set A = A, u 11, u A,. 
The following assertion is valid for any of the cases described. 

Lemma 3.1.. The timeT, [x,1 = T, Is,,] = cofor any initial position 
x,eB=X\A 

The lemma is proved by constlucting the optimal function ,$ [z], 2 E ll,whiCh 
guarantees to the second player the timeT, [x0] = 00 for any initial position x0 E n. 

That the time T, [x0], x0 E B, is infinite follows here from inequality (1.3). 
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Fig. 4 
We consider a neighborhood 

0 of set A of sufficiently 
small radius such that the seg- 

The intersection of the boundary ments [h,, ll,] and I/~,, h,] lie outside this neighborhood. 

of neighborhood 0 with the trajectory of system (1.1) from point m for u = -_CI, v = 
= --V is denoted by sz. We denote the boundary of neighborhood 0 by slslss (Fig. 3). 

The curve (mszl is the part of the trajectory mentioned above, passing into the third 
quadrant outside set A and outside strip V. The set 0 \ A divides this curve into two 

parts. Let F, be that one of them that is adjacent to the curve maand let F, = 

= (0. \ A)\ Fi. We include the curve ms, in F,. If the straight line PJ?, intersects 
set F,, we denote by FYI . its subset lying below this straight line and by Fy) the 
complement of Fy) in F1. If there is no intersection, we set Fy) = F1. 

It is not difficult to prove the validity of the following assertion. 1) ‘If r, = z(t,) E 
E (ms,] and v = v (v = - v), then there exists a number At > 0, not dependent on 
zO, such that on the interval [f,,, t, + LYt) the system (1.1) will be moved outside the 

set F, U A for any realization u(a). In set B we define a function u”[t] in the follow- 

ing way. In the set F, IJ F, c B we put 

The construction of the 
function @[t], t E 8, is 
different for different cases. 
As an example we present the 

construction for case 2.1. In 

case 2.1. the boundary of set 

A consists of two smooth 

curves ma, and mdb (Fig. 3). 
Through the points h,, hs we 
draw a straight line P,R,. ‘The 
part of the curve ?na (mdb), 

located above the straight 

line P,R4 (MJV,), is a trajec- 

tory of system (1.1) foru = p, 
u=2 -v (u = v), while the 

part located below tnis straight 

line is a trajectory of system 

(1.1) for u = p (u =I -p), 
Y = v. 

v” [z] = V, if ZE F,lJF1(') 

- v, if z E F1@) 

The function, v’[t] is given arbitrarily in the set B \ (F, U FJ Let us assume that at 
some instant. t system (1.1) finds itself in the set Fz u FY) (FYI) and that I.(L) = 
= v’[t(l)]. Then for any value u(t) it is attracted at' this instatit to one of the points 

of the segment [h,, h,] ([h,, h,]). Relying on this property and taking into account the 
abovedescribed nature of the boundary curves of set A, we can prove the following 
assertion. 2) Suppose that the second player applies a discrete scheme on the basis of 
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the function u”[z) and that Z, E P1 (z~ E F,). Then for a step of the discrete scheme 

ATI Q A(q), where A(zO) > 0 is a sufficiently small number, the system (1.1). for 
any-realization u(a) goes into the curve (slsSm) ([s, s8)) in a finite time, without hitting 

on the boundary of.set A up to the instant of going into the curve mentioned. 

From assertions 1). 2) it follows that if the second player applies a discrete scheme 
on the basis of the function uO[r], then from any initial position to E Pi IJ FI with a 

sufficiently small step of the discrete scheme, system (1.1) is carried out to the curve 

si sI ss, without hitting on the boundary of set A upto the instant of going into the 
curve. On the basis of this conclusion we can show that for any z,, E B , with a suffi- 

ciently small step of the discrete scheme, it is impossible for system. (1.1) to fall into 
the boundary of set A (and, hence, also into A) fort > to The latter proves the optim- 
ality of the function up[z], z E B. 

4. Let us solve Problems 1, 2 for initial positions x0 in the set d.We examine case 
2.1. Consider the family L of all possible trajectories of system (2.2) with u = v, 

starting at point d. Any trajectory of this family passes into set A,. We select an arbit- 
rary trajectory from Land we denote it df (Fig. 3). Let C be a maximal closed sub- 

set of set A ,Iocated to the right of the curve mdf,and let D = A \ C. We state an 
auxiliary rule for forming the realizations u (.) in the set d \ {m}by the feedback 
pri nciple. 

Rule 1. The value u (t) at instant t equals -_CL (II), if 3 (t) E C \ 
\W4 U (4)) (2 (1) E D).If 2 (4 E (df) h t e value IL (t) is chosen in accordance 
with the value v (1) from the condition of moving along this curve in the direction of 

point tl ; if, however, such a choice is not possible, we set u (t) = - p. Ifs (t)E 

E (mo), IL (1) is chosen in accordance with L, (t) from the condition of moving along 
this curve in the direction of point nt. 

Let us explain the choice of the value u (1) on the curves (df) and (me). From the 

definition of the curve df , it follows that system (1.1). moving along this curve toward 

point.dwhen v z v, is attracted at each instant t’ to some point g(t) xof segment 
[Ir,, h,]. We draw a straight line through the points ,x(t) and q(t) The segment [p(t), 

q(t)]- the intersection of this straight line with strip V - does not necessarily belong 
wholly to the parallelogram hthzhgh,, Namely, a part of this segment - the interval 

[p(t), o(t)) (o(t) is the point of intersection of the segments [Ii,, ha] and [P(t), 9(r)]) - 
can lie to the left of the segment [hi, 4.J (Fig. 3). The interval p(l). o(t))also picks 

out those values u(l) (see (2.1)) from each of which it is impossible to choose a 
value 11(l), satisfying constraint (1.2) and directing the vector Z’(L) along the tangent 
to the curve df on the side of point d. For such values u(t) in Rule 1 we have set 

u(t) = -_cr, and, by the same token, the vector, z.(t) is directed into the interior of 

set C.For values u(t), corresponding to points of the segment [o(t), q(l)], the vector 

z.(1) can be directed along the tangent to the curve df on the side of point d. 

The vector z*(t) has least length when IQ(I) = v. At any point r(r) E (ma) from any v(t) 
we can choose @), directing the vector z*(t) along the tangent to ma on the side of 
point m.The tangent vector s.(t) has least length when u(t) = -v. 

For any realizationv(.)Rule 1 allows us to transfer system (1.1) from any point 
r,, e,d to the point m,in finite time, without its leaving set A.(Recall that by a 

realization n (.) we mean a time function v (t), t, < f < oo,stimulated by the 
second player during the game and not necessarily specified a p r i o r i . ) 
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We denote the transition time by T(t) [z,,, v (.)I. By T(i) Ix,] we denote its least upper 
bound over all possible realizations v ( - ). 

We introduce the set iJ [x0, v (+) IA] (U IX,,, v (*)I Dl) of programs 14 (.): a 
program u (a) belongs to set US,, u (*) /A]( U 1x6, v (.)lDl) if in moving from the 

point zO E .l (30 E D) by virtue of programs v (- ) and u (* ) system (1.1) hits point 

m(curvedf)in the finite timeT, [s,,; u (w), v (-)I (T, lx,,; u(.), v (+)I) without 
leaving set A (D) upto the instant of the hit. From the set of all possible programs 

v (* ) we pick out a set I’ [x0 IC]: a program v (. ) belongs to set v [x0 IC] if in 

moving from the point z,, E C by virtue of this program with u = - p, system (1.1) 

does not leave set c upto the instant of hitting onto curvema. We pose an auxiliary 

problem. 
Problem 4.1. 

u* (*) E u 150, 

Find right-piecewise-continuous programs U* (. ) E V [s,lc], 

n (*) ]A], satisfvinp. the relation 

T, [zs] = max,(.)mind.j T, [so; u (-1, v (*)I = Ti [a% n* (.), n* (-)I, x0 E c 

where the maximum is taken over all programs v (a) E v (so/C] and the minimum 

over all programs u (0) E U Ilo, v (*)I Al. 
Lemma 4.1. The solution of Problem 4.1 is unique for any initial position 

x0 E c For any x0 E c we have v* (t) 3 -v, and the program U* ( - ) coincides 

with the realization& (m), formed in accordance with Rule 1 with U (t) E -V. The 

program v* (0) satisfies the relation 

T(l) [x0* u* (a)] = maxd.) T(i) [x0, v (a)], zO E c (4.1) 

where the maximum is taken over all programs v (.) E v [sol C]. 

Proof. The motion of system (1.1) by virtue of the programs V*(V) and u*(*), 
mentioned in the Lemma’s statement is denoted by t”(t) and is termed standard. 

1. We prove relation (4.1). Assume that the first player uses Rule 1. Let Q, = 

= &) E5 C \ [4.8y t[z,, v(m)] ,we denote the first instant that system (1.1) hits 

onto curve ma..We fix an arbitrary program v(s) EI’[z,J~ C], The motion z(f) of system 
(1.1) by virtue of this program and of Rule 1 is called a phase motion (to distinguish it 

from the standard motion). We set tItol = max (tlzo, v(-)J, t[to, V*(W)]). Let us show 
that at the instant f[zO] the point r(t[ro]) is located on the curve ma not farther in 

relation to point m than the point sO(t[zO)) (notation: z(~]z;]) < z”(t[zr,])).. The validity 

of relation (4.1) for any zO E C follows from the obvious validity of this relation for 

20 E (ma) as a corollary of the last assertion. 
Through the points hi, h, we draw a straight line P,R, (Fig. 3). Let C(l) (Cc2)) be the 

part of set C. lying above (below) this straight line. The intersection of-the straight 
line _P,J?Rs with set C is included in C(i). Assume that zO E C(i).The standard motion 

on the interval [to, L[zO, v*(*)])~will be attracted to the point h,, while at any instant 

t E Iro, t]z,, v(-)I). the phase motion will be attracted to some point (depending on t) 
of the segment [hi, h,]. Hence, with due regard to the nature of the orientation of 

segment (h,, h,] we get that when f ,> t, both motions will pass into C(i) and the points 
where they hit onto the curve mu are connected by the relationr(t [z,,v(*)]) < ~“(r~%~u*(*)])~ 
Consequently, to prove our assertion we need only examine the case t[zO, V*(.)] < 
4. f[q, r(e)]. It is possible only when the curve ma decreases monotonically with 
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respect to zr.In this case, for any t E [t[zs, v+(.)], 1[z,,]) the standard motion is attracted 
to some point of rhe segment ]$, h,], whereas the phase motion is attracted to a point 
of the segment [h,, hl]. Therefore, for any t E Ito, t[r,,])we have 21’ (t) Q zl”‘(t), and, 
hence, zl(t[zOJ)< tiO (t[~]). Since at the instant t[zJ both motions are found to be on 

the curve ma, (keeping in mind the nature of this curve) we obtain: z(r[zJ) < z’(t[z&. 
By means of arguments of the very same kind we can prove the relation z(t[q]) < 
g z”(r[zOl) also for to E Ct2j. 

2. Let q E C and v = -v. The program u+ (.) E U[z,, u*(.).]d],solving the problem 
of transferring system (1.1) in least time from the point I,, to the point m without its 

leaving set A. has the following structure: it equals -pupto the instant that system 

(1.1) hits onto the curve ma,and subsequently it effects the motion of system (1.1) 
along the curve ma upto the instant of hitting onto point m.This fact follows from a 

qualitative analysis of the reachable region. [1] of system (2.2) from the pointz($) = m 

with u = - v and under the phase constraint?(r) E C, ‘c > r,,.Obviously,u,(*) = u+(a). 

Hence the lemma’s assertion follows from relation (4.1). The Lemma is proved. 

For any q, E A, C C the set Y ho 1 Cl, coincides, as is not difficult to verify, 

with the set of all possible programs v (. ). Therefore, in the set A, the timer, ]z,] = 

= T(i) [zs]. From among the curves of family L let us try to find a curve df” which 
separates out from the set Ala maximal closed subset C’(containing A,), for each 

point .zo of which the equality [1’1 [x0] = T(i) [s,J is satisfied. Such a curve exists. 
We can indicate a method for constructing a sequence of curves whose limit it is. We 
restrict ourselves to listing some properties of this curve. 

By i we denote the point of inter- 
section of the straight line PzRl 

with curve db fFig. 5). If there is 
no intersection we take it that the 
point i lies at infinity (on the curve 

db) 
1. The curve @ is a smooth 

trajectory of the motion of system 

(2.2) from point d with u = v. 

2. The relationr(‘) (5*, -P) < 
< x,f” < r@) (z,,-II) is valid 

for any point X* on curve dp 
kt z(l), cc@) be arbitrary points 

on curve dr and let $1) be located 

closer to d as compared to z(s). 
3. The maximum T(s) [s@),zCl)J 

of the timeT@j [z(s), z(i); v(.)J 
it takes system (1.1) to move from 
the point z(s) to the point #along 

curve dj” taken over all programs 
u (a) for which such a motion is 
possible, is reached on the program 

u (0 E v.. 

4. The inequality 

Fig. 5 
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T@) Iq,, dl + T, idI & T, is,1 (4.2) 

is valid for any point x0 on curve dp 
5. Let g be the point on curve dp, for which the equality sign in (4.2) is first ach- 

ieved when we go from the point d, Then, the equality sign is achieved in (4.2) for any 

point zO on the curve gp, The arc dg of curve dp lies completely on the arc di of 
curve db. 

6. If point s(‘)belongs to the curve[dg) ((gf”)) then the inequality (equality) 

I’(*) [x(2), z(l)] + T, [x(l)] < T, [s(2)] (T(3) [s(2), z(l)] + Tl [s(l)] = T, [s(2)]) 

is valid. 

The curve gf - a part of the curve dye - is called an equivocal curve r2]. We pose 
two auxiliary problems. 

Probelm 4.2 (4.3). Find right-piecewise-continuous programs 

satisfying the relation 
u*(.)IDo], D”=A \ co) 

max,(.) IA,,(.) T, [x0; u (s), v (a)] = T, [s,; u* ( l ), v* ( *)I, s,EC” 
(4.3) 

(G bol = I*w,(.) Inin,, V2 [G: u (+ u (-)I + T, [Z [JX u (a), v (91) = 
=T,[~,;~*(.),~*(.)~.+T,I~[I~;U*(.),U*(.)]I,~~E~‘) 

where the maximum is taken over all possible programs v (B) and the minimum over 
all programs 

and z [t,; IL (.), v (. )] is the notation for the point of first entry of system (1.1) onto 
the curve df’ from the point z,, E D’by virtue of programs u (a), v (s). 

The solution of Problem 4.2 ensues from the solution of Problem 4.1, from the prop- 

erties of curve df” and from the equality T, [z,l = T(l) [s,], z,, E C”. When 

5s E C” \ (gf”) the program v* ( . ), is unique: u* (t) zz - V. For points CC,, on the 

curve (g/“) the maximum in (4.3) is reached on any program V* (-) of the form 

co < t < to + At 
t>,fo+At 

O<Af<T@) Isd?l_ 

In any case the program u* (.) coincides with the realization IL (. ) formed in accord- 

ance with Rule 1 with V (t) = V* (t). Th e solution of Problem 4.3 is described in 

Lemma 4.2, its proof is omitted. 
Lemma 4.2. For any initial position zO E D” the solution of Problem 4.3 is 

unique. For any .z,, E D” we have v* (t) EG v, and the program U* (a ) coincides 
with the realization U (.) formed in accordance with Rule 1 with v (t) I V. The 
program v* (. ‘) satisfies the relation 

T,[s,;~*(.),u*(.)]+T,[~1~~;~*(.),~*(.)11 = 

= max,,.,{~~[~,;~*(~),u(~)~+~~~~~~~;~*~~)~~~~)ll~ (2, E D”) 

where the maximum is taken over all possible programs v (.), 
Typical trajectories of the motion of system (1.1) in the set C” (D”) by virtue of 

programs ri* ( + ), u* (.), solving Problem 4.2 (4. 3). are shown on Fig. 5. Thus, Rule 
1 guarantees the first player the time 
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(4.4) 

A 
ma1 tactic-{u’, V} 

It is not difficult to establish that the function Z’(t) [s] is continuous in the set 

= e \ I D”. In the setd ‘\ {m} let us construct, on the basis of Rule 1, the opti- 

. .We set 

u’[s] =’ 
- p, if f E C\([WWW) 

P* if 2 E D’ U (4 U (47 
The second element of the tactic - the sequence (8,’ [z)) on the curve (ma) ((dp)) 
- is specified by means of a fan-shaped sequence (p,,) ((Y,,)) of auxiliary curves con- 
verging to the curve ma (u’r) asn + oc,Each curve of the sequence should leave the 

point m (d) and pass into the set (7 \ (ma) (C“’ \ (dJ”)). (Several curves of the 

sequence (SJ ((%I)) are shown on Fig. 5 where they have been denoted by J+ (I’).) 

At a point.+,on the curve (ma) ((df”)) we set 6,” [s,]equal to the least time, with 

respect to u (a )for system (1.1) to move from the. point z,, upto the curve p,, (Y,,) 
with 14 = 1-1. At the remaining points of setd .\ {m} we take&O (~1 = 6” [+]for any 

11. We choose the function 8” IS] such that for any arbitrary initial position 

.ra = f (I,) E: C”\([m.a) u (df”)) (50 = x (to) ED”), U = - I’ (U = @) 

system (1.1) with any realization V( * )may not leave the set c (Do) in the interval 
[to, t, + 0’ [r,,]].The tactic {u’, 8’) described ensures the “sliding” of system (1.1) 
along the curve ma in the direction of point m for any realizations ( .).Here the motion 

does not go outside of set A,The appearance of a sliding mode on the curve dp is 
already connected with a concrete form of the realization 17 (.).A possible trajectory 

of the motion of system (1.1) when the first player uses the functions U” 1x1, a,,“ [a~) 
is shown by a dotted line in Fig. 5. 

Let us sketch the proof of the optimality of tactic (u’, &‘).Let z,, be an arbitrary 
initial position in set A. We fix an arbitrary program v(s). As n -+ oathe sequence of 

trajectories of the motions of system (1.1) from the point z,, by virtue of program 
u(m) and of functions u”[z], a,“[~] converges to the trajectory of the motion of system 

(1.1) from the point +O by virtue of program v(s) and of Rule 1. Here the sequence 

UGo; uO, a,,‘, v(e)]) converges to the quantity TaJ [q, v(*)]. Consequently, 

sup”( .) T(l) [zo, v (a)] = SU&.(.)limT [Qco; u”, S,Os u (*)I , ,ZOEA (4.5) 
n-+m 

Here the least upper bound is taken over all possible programs v(-). Further, for a given 
concrete tactic (ILO, a“) we can prove the equality 

sup,JZi T [za; rP, tin?, v(s)]= limaup, T 120; u”, 6,“s v (-11 , 
n-m 7X-00 

zo E A (4.6) 

where too the least upper bound is taken over all possible programs q-3; It is obvious 

that the least upper bound of the quantity 

T [zo; u’, eno, o (-)I (T(l) [RI, o (*)I), zo E A 

over all possible programs it (.) coincides with the least upper bound of this quantity 
over all possible realizations v(a). With due regard to this fact, the optimality of the 
tactic’fu”, @}ensues from the equalities (4.5). (4.6) and from the meaning of the time 
T(t) [+I (see the definition of this time and see fOrmUla (4.4)). 

The known form of the maximin programs TV* (?) solving Problems 4.2, 4.3 right 
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away permits us to determine, keeping inequality (1.3) in mind, the optimal function 

v” [Xl 

I 

-V, if 2 E Co\(sf”) 

Ud [x] 4 V, if ZED" 

either% or -% if 2 E (&If”) 

Thus. for any initial position x0 E A the tactic {no,&‘} guarantees the first player 
the time 

TI [ir,J = T, [q,l = T(l) [soI c 00 

while the function v” (z]does the same for the second player. 

The limit (as n -F w ) motion of system (1.1) from a point x,, E A by virtue of 
functionsue [xl, 8,” [xjand of functions v” [xl with a discrete step & is called a 
standard motion. By looking over all, possible methods of specifying the function 

v” [x]. on the equivocal curve gp, we obtain a complete collection of standard 

motions issuing from the one point 2s and reaching along different trajectories the 

point m in one and the same length of time. When x0 E c” this collection is contai- 
ned in the set of all motions of system (1.1) from point-x, by virtue of the programs 

v* (s), U* (a), solving Problem 4.2. When x0 E b”the standard motion coincides, 
upto the instant of hitting 
onto the curve gf” with the 

motion of system (1.1) by 
virtue of the programs 

U* ( l ), v* (a), solving 
Problem 4.3. 

The analysis of Case 2.1 
has been completed. We 
dwell briefly on the remain- 

ing cases. The single diff- 
erence between case 2.2 and 
the one just analyzed is that 

the time’ T, I%,1 = T, IS, I= 
= oo on the curve (db) 
(in this case it is a halfline). 

Fig. 6 
In case 2.2 the point g coin- 
cides with point d. 

In cases 3.3. 3,4 the standard motion goes along the curve me before hitting the 

point m .The solution is similar to the solution in case 2.1: the set A is divided in the 
same way into two sets p and Do, and in them the tactic {u’, 6’) and the function 
u” [xl are determined in the same way. In the set A the time T, [x,,] = T, [sol< 
<a, and has the same meaning as before. 

Cases 1.1, 1.2 (3.1, 3.2) can be looked upon as a degeneration of case 2.1( 3.3) 
when A = A,. In these cases the equivocal curves do not arise. 

The solution in Case 2.3 is most complicated in nature (Fig. 6). I.etA,be a closed 
curvilinear cone containing the xi -semiaxis and bounded by the curves r(l) (m, p) and 

r(l) (m, -/A). A certain curve aqmdf divides the set A = X into two parts co 3 A i 
and Do = A \ C” ; the curve aqmdj is included in C’:The arcs md and qm 
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of the curve uqmdf abutting point mare arcs of the curves t(s) (m, -_cL) and +I 
(m, p) respectively. The curves,df and aq are equivocal, they pass into the set 

A \ Al. The location of point q on the curve #I (m, p) depends upon the distance 

between the pointil and &The functions u” [z] and no [s] are determined in the 
following way: 

- v, if x E CW(qe) U WI1 

v0[5] = V, if ZElP 

either v, 01 -V, if zE(ga)U(dfl 

The sequence (8,’ [z]) is g iven with the aid of auxiliary curves. The time T, [toI = 
= T, [z,] < oo on the whole plane. The function T, (so] undergoes a discontin- 

uity on the curve [qmd]. It is continuous in the rest of the plane. 
Figures 2, 4, 6 show typical standard trajectories for cases 1.1, 3.3, 2.3. reSpXiV- 

ely. Thus, the solutions of Problems 1 and 2 for the cases not covered in the hypotheses 

of Lemmas 2.1, 2.2 have been found completely. Namely, a partitioning of the plane 

into two sets A and B has been indicated. For xs E A the time T,, Is,,] = T,, Ito] < 
< co( the only exception is case 2.2 in which the time T,, Iz,l = T,, ho1 = ooon 

the halfline (db) lying on the boundary of A ). For zs E Bthe time T, ha] = 
=T, IsOl = oo.The first player’s optimal tactic{u’, dO}and the second player’s optim- 

al function u” [s] have been determined in set A. The optimal function no (~1 has 

been found in set B . 

The author thanks N. N, Krasovskii for discussions on the-work and for valuable advice. 
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